The Virtual Voice

Pitfalls in Simplification of Dynamic Simulation

The selection of the correct level of model complexity or simplicity is an important part of every dynamic simulation project.  Two experts in process modeling Zach Sample and Don Sengur have teamed up to discuss the dangers in missaplying simplification to building dynamic simulation.


Don Sengur, Lead Project Consultant, and Zachary Sample, Simulation Project Engineer, at MYNAH Technologies


"Over the years, engineers at MYNAH Technologies have become well practiced in process analysis and translation into simulation models. As with all engineering principles, process simplification is a necessary tool in simulation used to quantitatively describe the complexities of a real phenomenon. While simplification can be advantageous in process simulation by improving maintainability or reducing project completion time, more sophisticated processes may not be easily simplified. As modern technologies become common in industrial processes, this issue is compounded by an influx of clients with sophisticated or specialized unit operations. While simplicity is favored in practice, simplification is limited in complex systems due to an inability of simplistic models to capture the complexity of real process behavior and control response.

Examples of this practice have been encountered repeatedly in simulation development. For example, batch processes such as bioreactors and pulp digesters not only require rigorous material and energy balances for the process to reach  a realistic target value, but these batch operations also require the system to respond with precise timing and process dynamics in order to appropriately capture the process behavior without tripping safety alarms or failures. Time sensitive processes and controls such as these may require a more complex model to simulate reality.

Processes such as those found in coal liquefaction that have highly endo/exothermic reactions or short residence times present their own challenges. These processes tend to have drastic fluctuations of flow, composition, pressure or temperature over shorter periods of time than the normal simulation execution time. In these cases, using a normal execution time could cause the simulation of these processes to be chaotic and uncontrollable. While it may be tempting to simplify the model to either avoid the need to increase the model execution speed or prevent overloading of system resources at faster execution speeds, a simplistic model may be unable to reflect the critical behavior of the real process. In order to appropriately simulate these fast processes, a sophisticated simulation model may be necessary.

While the complexity of sophisticated systems such as those containing bioreactors or hydrocrackers can be easily anticipated, processes that are seemingly easy to develop can be quickly complicated upon integration with the control system. For example, a simplified conveyor model, used extensively in mining industry, can be created with a number of fairly straight-forward approaches. However, the real world conveyor introduces a large, variable process dead time in addition to conditional behaviors during a loaded startup and shutdown. Since these behaviors are accounted for in the control system, the modeled conveyor performance must be built with enough complexity to match reality. Otherwise, the control system may be unable to respond appropriately causing potential system instability or failure of associated equipment such as valves, pumps or compressors.


Complex unit operations like columns may be solved with simplified models like the one shown above or could require more complex models.


An important consideration in model simplification is that model complexity does not necessarily correlate to configuration difficulty. In fact, packaged models of greater complexity and resolution are often significantly easier to configure and integrate into the simulation. This has been made evident by recent interns that have been able to model complex systems using packaged models such as MiMiC's boiler object after just a few weeks of modeling and training.

This is not to say that model simplification is not beneficial in practice. In fact, simplification is necessary to meet deadlines and budgets when modeling complex processes. Furthermore, model simplification is not limited to process boundaries or unit operations with limited impact on other process equipment or controls. When careful consideration has been made to avoid potential pitfalls, simplified models can be created to simulate major process operations. However, if the consequences of oversimplifying of a process is not considered prior to model development, the amount of work required to address issues with control system integration may greatly surpass the effort required to create a complex model."

Zachary Sample, Simulation Project Engineer, zachary.sample@mynah.com
Don Sengur, Lead Project Consultant, donald.sengur@mynah.com

I look forward to your comments, questions, or suggestions.

Hope to hear from you soon.

Mart Berutti, 04/16/14


Martin Berutti
Email: martin.berutti@mynah.com
Phone: +1.636.728.2016
Skype: mberutti
Follow mberutti on Twitter

http://www.emersonprocessxperts.com/
http://www.modelingandcontrol.com/

Martin Berutti is the President and COO of MYNAH Technologies. Areas of expertise include process simulation, control system and network design, and information integration. Martin has been with MYNAH and Experitec (parent company of MYNAH) for over 19 years and has held positions of Systems Engineer, Performance Consultant, Project Manager, Director, Performance Technology, and Business Director. Previous employers included Fisher Controls, Rosemount, and Applied Automation. Mart has a BS in Chemical Engineering from University of Missouri-Rolla.


Control has published the 2012 Reader's Choice Awards and MYNAH Technologies was voted number one in the category of simulation software.

It is my pleasure to introduce Noelle Hasser, our new MYNAH Marketing Associate and the editor of the Latest Squawk on MYNAH.COM.

In the September 2011 issue of Control, Greg McMillan and Stan Weiner interview MYNAH's Alex Muravyev on the future of dynamic simulation in The Key to Process Knowledge and Sustainable Manufacturing.

Please join us at MYNAH's world headquarters in Chesterfield, Missouri for Dynamic Simulation with MiMiC Training Course, December 5th through 9th, 2011.

In the February 2011 issue of Control, Greg McMillan and Stan Weiner continue their discussion of the virtual plant for operator training in Operators Unleashed.

Thursday,  Feb 3, 2011: MYNAH is open again.  The storm has passed and luckily St. Louis missed the worst of it.  

In the January 2011 issue of Control, Greg McMillan and Stan Weiner discuss the use and application of the virtual plant in The Virtual Plant - Better than the Real Thing.

The results of Control Magazine 2011 Reader's Choice Awards have been published and once again the readers of Control like MiMiC.

MYNAH Technologies' office will be closed December 24, 27, and 31st.  We will open again after the holidays on Monday, January 3rd.  

On October 4th, Greg McMillan was awarded ISA's 2010 Lifetime Achievement Award.

Pages

[RSS] Subscribe to RSS feed | Contact | Legal | Privacy

ISO 9001-2008 Certified
© 2012-2014 MYNAH Technologies LLC. All rights reserved.